Inhibitory Effects of Green Tea and (–)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein
نویسندگان
چکیده
Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates.
منابع مشابه
Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide
We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 ce...
متن کاملInteractions of green tea catechins with organic anion-transporting polypeptides.
Organic anion-transporting polypeptides (OATPs) are multispecific transporters that mediate the uptake of numerous drugs and xenobiotics into cells. Here, we examined the effect of green tea (Camellia sinensis) catechins on the function of the four OATPs expressed in human enterocytes and hepatocytes. Uptake of the model substrate estrone-3-sulfate by cells expressing OATP1A2, OATP1B1, OATP1B3,...
متن کاملPharmacokinetic Interactions Between Isavuconazole and the Drug Transporter Substrates Atorvastatin, Digoxin, Metformin, and Methotrexate in Healthy Subjects
This article summarizes 4 phase 1 trials that explored interactions between the novel, triazole antifungal isavuconazole and substrates of the drug transporters breast cancer resistance protein (BCRP), multidrug and toxin extrusion protein-1 (MATE1), organic anion transporters 1/3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 (OATP1B1), organic cation transporters 1/2 (OCT1/OCT2), and...
متن کاملInteractions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins.
The drug-drug interaction (DDI) potential of tyrosine kinase inhibitors (TKI) as interacting drugs via transporter inhibition has not been fully assessed. Here, we estimated the half maximal inhibitory concentration (IC(50)) values for 8 small-molecule TKIs (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, sunitinib, lapatinib, and sorafenib) on [(14)C]metformin transport by human organic ...
متن کاملPreclinical Development Interactions of Tyrosine Kinase Inhibitors with Organic Cation Transporters and Multidrug and Toxic Compound Extrusion Proteins
The drug–drug interaction (DDI) potential of tyrosine kinase inhibitors (TKI) as interacting drugs via transporter inhibition has not been fully assessed. Here, we estimated the half maximal inhibitory concentration (IC50) values for 8 small-molecule TKIs (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, sunitinib, lapatinib, and sorafenib) on [C]metformin transport by human organic cation...
متن کامل